物理基礎。 【物理基礎】公式の覚え方やおすすめ問題集・参考書を紹介!

基礎物理英文,基礎物理的英語翻譯,基礎物理英文怎麽說,英文解釋例句和用法

物理基礎

fundamental physics• : foundation; base; basis• : innate laws of things physic... : basic physical chemistry• : experiments in basic physics; fundamental physics experiments• : heidelberg graduate school of fundamental physics• : fundamental substance• : keystone species• : foundations of physics• : unit 2 foundation physical and inorganic chemistry• : elemental solidstate physics• : basics of computational physics• : fundamentals of atmospheric physics• : elements of cosmology physics• : principles of physics in materials science• : college physics foundation lab• : basic exp. : 1. 泛指事物發展的根本或起點 foundation; base; basis 經濟基礎 economic base [basis]; 理論基礎 theoretical basis; 物質基礎 material base; 在和平共處五項原則的基礎上, 同各國建立和發展關系 establish and develop our relations with other countries on the basis of the five principles of peaceful coexistence; 打基礎 lay a foundation; 為增產打下堅實的基礎 lay solid foundations for increased production; 在已有的基礎上前進 build on past achievements; 這是兩國關系應得到繼續發展, 并可能得到繼續發展的基礎。 this is the basis on which our bilateral relations can and should continue to develop. 把建筑物、機器等的荷重傳遞給地基的結構 base; seat; groundwork; bottom; underpinnings; substruction; foundation; subbasement; 基礎 課 部 basic courses department; fundamentals department; 基礎代謝 basic metabolism; 基礎工業 basic industries; key industries; 基礎教育 elementary education; 基礎結構 infrastructure; 基礎科學 basic science; 基礎課 basic course of a college curriculum ; 基礎理論 basic theory; 基礎理論研究 fundamental research; 基礎設施 parts of the infrastructure; projects for basic facilities; 基礎施工 foundation construction; 基礎訓練 grounding; 基礎醫學 preclinical medicine; 基礎研究 research in basic science; basic research• : 1. 事物的內在規律 innate laws of things2. 物理學 physics 應用物理 applied physics; physical; 各種土壤的物理成分 the physics of different soils; 物理變化 physical change; 物理定律 physical law; 物理化學 physical chemistry; 物理力學 physical mechanics; 物理療 法 physicotherapy; physical therapy; 物理試驗 [工業] physical testing• : slab foundation• : pumfoundation• : do spade work; prepare oneself for bigger tasks ahead• : simple footing• : pier foundation• : raft foundation• : buoyant foundation; floating foundation• The basic physics needed for astronomy, which underpins some of the forthcoming material, is here. 這里介紹天文家所需要的 基礎物理,它們是閱讀后面的一些內容的基礎。 The basic physics needed for astronomy, which underpins some of the forthcoming material, is introduced here. 這里介紹天文學所需要的 基礎物理,它們是閱讀后面的一些內容的基礎。 On the action of force , energy and entropy in elementary physics 能量和熵的概念在 基礎物理中的作用• Relativity lies at the heart of the most fundamental theories of physics 相對論是絕大多數 基礎物理理論的中心。 The embodiment of sts education thought in the physical new course of middle school 教育在 基礎物理新課程中的體現• The thought of reforming basic physical experiment teaching in higher vocational education 深化高職 基礎物理實驗教學改革的思考• Object is associated with two entities that define the location of underlying physical file 對象都與兩個定義 基礎物理文件位置的實體關聯:• Object is associated with two entities that define the location of the underlying physical file 對象都與兩個定義 基礎物理文件位置的實體關聯:• Physics conception is the important and difficult teaching factor in basic physics 物理概念是 基礎物理教學中的重點和難點,同時也是薄弱環節之一。 These new effects have many potential applications in fundamental physics and applied physics 這些新效應在 基礎物理和應用物理方面有著重要的應用。 更多例句: 1.

次の

【物理基礎】弦の振動の公式とは?導出も問題もイメージで突破せよ!

物理基礎

(從左上角起,順時針方向)1. 折射光;2. 一束雷射;3. 熱氣球;4. 陀螺;5. 非彈性碰撞;6. 氫的原子軌道;7原子彈爆炸;8. 閃電;9. 由於物質與能量是所有科學研究的必須涉及的基本要素,所以物理學是中最基礎的學科之一。 物理學是一種,物理學者從觀測與分析的各種基於物質與能量的現象來找出其中的模式。 這些模式稱為「物理理論」,經得起實驗檢驗的常用物理理論稱為,直到有一天被證明是有錯誤為止 具。 物理學是由這些定律精緻地建構而成。 物理學是中最基礎的學科之一。 化學、生物學、考古學等等科學學術領域的理論都是建構於這些物理定律。 :1-2 :2-3 物理學是最古老的學術之一。 :2物理學、、等等原本都歸屬於的範疇,直到十七世紀至十九世紀期間,才漸漸地從自然哲學中分別成長為獨立的學術領域。 :193-194物理學與其它很多跨領域研究有相當的交集,如、等等。 物理學的疆界並不是固定不變的,物理學裡的創始突破時常可以用來解釋這些跨領域研究的基礎機制,有時還會開啟嶄新的跨領域研究。 :1-2 通過創建新理論與發展新科技,物理學對於人類文明有極為顯著的貢獻。 例如,由於的快速發展,、、等新產品紛紛湧現,人類社會的生活水平也得到大幅提升。 :1 由於日趨成熟,已不再是藍圖構想,但其所引致的也使人們意識到地球環境、生態與人類的嬌弱渺小。 時期,著有《物理論》,是最早的書名含有「物理」一詞的著作。 明末清初科學家受到西學影響,撰寫了式著作《》,在這裏,「物理」的含義已演化為學術之理,包括自然科學的各門領域與人文學的部分領域。 清朝後,西方科學傳入中國,此時的譯者將「physics」翻譯為「格致學」或「格物學」。 「格物致知」這詞源自於《.》:「致知在格物,格物而後致知」,用白話說,「若要增進知識,必須窮究事物之理,唯有窮究事物之理,才可增進知識」。 這句話指出,明瞭事物是增進知識的關鍵方法。 在物理學裡,時常會利用觀察、模擬、實驗、推論、演繹等方法來獲得知識。 因此,將「physics」翻譯為「格致學」或「格物學」似乎有道理。 :2-3 中國戰國哲學家、和,以及,曾努力鑽研宇宙間萬物構成的原因。 惠施有十個命題,主要是對自然界的分析,其中有些含有辯證的元素。 他說:「至大無外,謂之大一;至小無內,謂之小一。 「大一」是指整個空間大到無所不包,不再有外部;「小一」是指物質最小的單位,小到不可再分割,不再有內部。 名家的思想以惠施為代表,認為「天與地卑,山與澤平」,萬物「畢異」本為「畢同」,並無區別。 後期認為物質世界是由微小的不可再分割的物質粒子所構成。 古希臘物理學 [ ] 1824年,在發行的《機械雜誌》內的一副刻畫。 阿基米德說:「給我一個支點,我就可以撬起整個地球。 」 :65-66 從古代以來,人們就嘗試著了解大自然的奧妙:為什麼物體會往地面掉落,為什麼不同的物質會具有不同的性質?如此等等。 從觀測與分析大自然的現象,早期人們找到其中的樣式,並針對這些樣式提出了各種理論,試圖解釋大自然的奧妙,然而他們所提出的大多數理論都不正確。 以現代準則來看,早期的物理理論更像是一些理論:現代的理論都需要經過嚴格的實驗檢驗,而那些早期的理論並沒有經過嚴格證實。 像和提出的理論中,有些就與日常所能觀察到的事實相悖。 :1, 28 儘管如此,仍有許多古學者貢獻出相當正確的理論。 古希臘哲學家(前624年-前546年)曾經遠渡,在學習天文學與,還加以推廣延伸,發揚光大。 他預測出公元前585年發生的,還能夠估算船隻離岸邊的距離,又從的陰影計算出其高度。 泰勒斯拒絕倚賴玄異或超自然因素來解釋自然現象,他主張,任何事件的發生都有其不變與普適的因果關係。 :8-10, 28 公元前5世紀古希臘哲學家與學生率先提出,認為所有物質皆是由不會毀壞、不可分割的所構成。 :14-15的思想家在方面推導出許多正確的定量結論,如對於的解釋 :65-66。 中世紀伊斯蘭世界的物理學 [ ] 從西元850年至950年間,大量希臘學術被翻譯成阿拉伯文。 科學家從希臘人繼承了。 在,他們將這些學術發揚光大,特別強調觀測的動作,發展出一種早期形式的。 :130-131. :362-363 海什木是光學的拓荒者 ( 英語 : )、、、等等科學家在光學與視覺領域給出創新理論。 海什木在著名著作《 ( 英語 : )》(Kitab al-Manazir)裏,堅定地駁斥了古希臘的視覺理論——,並且給出新理論。 倚賴關於眼睛內部解剖結構的資訊,他說明了光線如何進入眼睛,如何被聚焦與投射至眼睛的後部,他認為眼睛就如同「暗室」,光線進入一個小洞後,在暗室形成顛倒影像。 很明顯地,在這裡,他所指的是或。 他還描述怎樣用暗室來觀測日蝕。 :6-7 海什木的成就在並沒有得到應有的重視。 十二世紀,他的著作被翻譯成拉丁文,書名為《透視》(Perspectiva)。 直至十七世紀,這著作在歐洲是光學的標準參考書,強烈影響了後來、、等等科學家的研究。 :6-7 :86, 209 古典物理學 [ ] (1643年-1727年) 古典物理學指的是不涉及到量子力學或相對論的物理學,例如,、、等等。 古典物理學的盛期開始於十六世紀的,終止於十九世紀末。 :67 :11打響了科學革命的第一槍,他於1543年提出了描述太陽系統的,這理論推翻了托勒密的。 在1609年與1619年期間,發表了主導,他用數學方程式準確估算出從天文觀測獲得的行星繞著太陽的公轉數據,從而給予日心說強而有力的理論支持。 做實驗研究物體運動,發現落體定律,並且展示出實驗方法對於科學研究的重要性。 他倚賴使用實驗或觀測所獲得的證據,而不是倚靠純粹推理,來證實任何假說的正確性。 他強調使用數學來描述物理現象,大自然的語言是數學,假若不懂數學,則無法明白大自然。 1687年,提出的和為古典物理學奠定了穩固的基礎,他和創建了,給出一種新的高功能數學方法來研析物理問題。 他為第一次科學革命畫上了完美的終止符。 :84, 98物理學展現出兩個獨門特徵:使用實驗證據來檢視、採用數學語言來表述物理定律。 物理學逐漸發展進步,成為一門獨立學科。 :100 :193-194 現代物理學 [ ] 二十世紀初期,物理學者發現古典物理學存在著極嚴重的瑕疵:的零結果不符合古典物理學的預測,黑體輻射譜不符合熱力學的預測,古典電磁學無法解釋光電效應與原子光譜,放射性物質的物理性質貌似與古典物理學的背道而馳。 這些瑕疵給學術界帶來了一場前所未有的考驗,徹底地動搖了舊理論體系的基石,導致了二十世紀物理學兩大理論體系和的出現,進而開始了的紀元。 相對論和量子力學對於這些難題給出合理解答。 不僅如此,物理學者應用相對論和量子力學於像原子、分子等等的微觀系統,以及各種凝聚態宏觀系統,從而更為深切地揭示大自然的工作機制,並且促進物質文明蓬勃發展。 :1-2 核心理論 [ ] 雖然物理學的研究範圍十分廣泛,物理學者時常會使用到某些物理學的核心理論。 這些理論皆已通過很多不同實驗的多次檢驗,並且對於自然現象的預測被認為足夠準確,例如,古典力學的理論能夠準確地描述物體的運動,但必須滿足兩個前提,一是物體尺寸超大於、二是物體運動速度超小於。 :2當今,這些核心理論仍舊是很熱門的研究領域。 例如,二十世紀後半期,即在牛頓(1642年—1727年)表述古典力學整整三個世紀之後,學者發現與創建了,其揭示了力學系統的可預測性是一個錯誤的觀念。 這些核心理論大致包括於、、、、、等等基礎物理學領域,是進階研究專門論題的重要工具。 古典物理學 [ ] 主條目: 古典物理學包括那些在二十世紀初已成熟的傳統學術分支領域:、、、、等等。 古典力學研究受力物體的運動狀況。 是古典力學的基礎定律。 古典力學分為、和。 靜力學論述處於靜力平衡的物體所感受到力與力矩。 運動學描述物體的運動,完全不考慮力或質量等等影響運動的因素。 動力學研究改變物體運動的因素與物體運動如何因此改變。 按照表述方式的不同,古典力學又可分為與。 向量力學著重於論述、、、力等等向量間的關係,而分析力學則從受力物體運動時的或來分析物體的運動行為。 :緒論 :5-6 聲學是研究聲音的製造、控制、傳播、接收與效應的學術領域。 , ( 英語 : )與 ( 英語 : )是聲學所包含的一些重要現代分支領域。 超音波學研究超過人類聽覺能力的高頻率聲波,在醫學診斷與醫學治療方面有很多重要用途。 生物聲學研究涉及動物的聲波。 電聲波學研究電聲設備的操控。 光學專注於光的性質與行為的物理學分支領域。 光在裡被視為光線,能夠以直線移動,直到遇到不同介質時,才會改變方向。 反射、折射等現象都可以用幾何光學的理論來解釋。 光在裡被視為光波,能夠用來描述、、等等現象。 :149 熱力學主要研究與彼此之間的轉換。 在熱力學裏,通常透過描述物理系統平均性質的變量,像、、、等等來解釋自然現象。 熱力學研究這些宏觀變量彼此之間的關係(如)、以及它們的改變對於物理系統的影響。 : 51-56學習熱力學的起跑點是。 熱力學不研究物質的性質,這屬於領域。 從統計力學的理論可以推導出熱力學定律。 : 195統計力學應用來研究由大量粒子組成的系統的物理行為。 統計力學將單獨原子或分子的微觀性質橋接至大塊物質的宏觀性質,對於這些宏觀性質給出微觀層級的詮釋。 在大尺度的實驗中可以測量到這些宏觀性質。 :ix-x 電磁學描述與、的交互作用。 電磁學的分支有、、等等。 靜電學研究靜止帶電粒子彼此之間的交互作用。 靜磁學研究所有涉及常定磁場的現象。 電動力學研究所有涉及加速度帶電粒子、、時變電場與時變磁場的現象。 的基礎理論是與。 是的一種,可由帶電粒子的加速度運動產生。 現代物理學 [ ] 於1927年召開的第五次,全世界當時最卓越的物理學者齊聚一堂、腦力激盪,商討量子理論。 古典物理學通常用以闡述日常可觀察尺寸的系統現象,而現代物理學通常用以闡述極端或非常大尺寸、非常小尺寸的系統現象。 例如,化學元素可以被辨識的最小尺寸是或探索物質所操作的尺寸。 而粒子物理學操作的尺寸則更為微小,它論述的是基本粒子或由基本粒子組成的粒子。 由於使用大型來產生基本粒子需要非常巨大的能量,所以通常又稱為高能量物理學。 對於粒子物理學所研究的物理系統,那些關於空間、時間、物質、能量的普通常識不再適用,必須加以修改。 :269, 477, 561 現代物理學的兩種核心理論給出關於空間、時間、物質、能量的嶄新繪景。 論述發生於原子層級與次原子層級各種現象的離散性質,以及在關於這些現象的描述裏的粒子與波動的互補性質。 闡述,處於某參考系的觀察者,所觀察到在另外一個以相對速度移動的參考系發生的現象。 相對論又可分為與。 狹義與廣義相對論的區別在於所討論的問題是否涉及(彎曲時空),即狹義相對論只涉及那些沒有重力作用或者重力作用可以忽略的問題,而廣義相對論則是研討那些涉及重力的論題。 :1-4, 115, 185-187 按照尺寸與速度分類,物理學的四大領域。 :2 物理學的一大研究目標是在發現 ( 英語 : ),即毫無例外的規律,但似乎每一種物理理論都只適用於某些明確值域。 :第9. 1節大致而言,的定律能夠準確地描述超大於尺度、超小於的系統。 在這適用範圍以外,實驗結果與理論預測並不相符合。 徹底地丟棄了絕對時間與絕對空間的概念,且以四維取而代之,因此得以準確地描述速度接近光速的系統,即相對論性系統。 :11-12不似古典物理學一般地描述宏觀物體的物理行為,而是地描述微觀系統的物理行為,它成功地通過了當今任何檢試其正確性的精密複雜實驗。 :221-225 統一了量子力學和狹義相對論,是不可或缺的基礎理論。 :2與也已被合併為。 :338-346物理學者期望在不久的未來,、與能夠被收斂在的論述內。 :84-85將時空延伸為動態的彎曲時空,能夠描述大質量系統和的大尺寸結構。 :3-4但是,廣義相對論與其它種基礎交互作用表述尚未能被統一為單一理論;科學家仍舊在發展幾種可能的理論。 與其它學術領域之間的關係 [ ] 形表現出的。 物理與數學相輔相成 [ ] 數學是研讀物理必備的工具之一,這包括、、等等。 應用這些數學工具,物理學者可以從物理定律推導與演算出很多有意思的結果。 例如,1912年,獲知在探索重力的相對性理論中,遇到一些挫折,他便力勸愛因斯坦學習微積分。 愛因斯坦採納了勒維奇維塔的建議,勤學張量微積分,並於1915年成功創立了。 如同大多數英國的理論物理學者,讀大學時專修數學,因此有深厚的數學造詣,能夠將方法引入相對論研究,證明在每一個黑洞的中心存在著一個奇異點,這就是在宇宙學裏著名的。 :462, 469 數學在物理學裏的主要角色並不是推導與演算的優良工具,它還扮演了一個更關鍵的角色:作為一種抽象語言,擔當精準地表述物理定律之任。 實際而言,物理定律必須先用數學語言來表述,然後才能將數學工具的功能發揮至極。 伽利略在1622年著作《 ( 英語 : )》裏提到,是大自然表達其內涵所用的語言,假若棄之不用,則無法瞭解大自然的任何一句話。 物理學依賴數學來給出準確的公式、準確或近似的解答、定量的結果或預測。 在著作《 ( 英語 : )》裏也有類似的表示,他認為,不知道數學的人很難真正地理解大自然的美,尤其是最深刻的自然之美……假如你想知道任何有關大自然的事物,或者想鑑賞大自然,就必須瞭解大自然所用的語言 數學語言在表述物理定律的同時,也表述出內含的數學概念。 例如,根據,在量子力學裏,有兩個基礎概念:物理系統的是以的單位向量來代表,從觀察物理系統得到的是以作用於這些向量的來代表。 一旦找到了這兩個基礎物理概念的對應數學概念,整個的理論都可以立刻應用於量子力學。 這凸顯出數學的重要性與適應性。 在數學理論裏瀰漫著數學語言,其伴隨的數學概念往往會指出前進的道路,有時甚至會衍生出經驗預測。 這並不只是巧合,而恰恰反映出在數學與物理之間無比深奧的關係。 例如,1915年,最初創立之時,尚沒有甚麼牢靠的經驗性觀測基礎,它在當時所能解釋的最著名現象就是無法解釋的的反常。 1919年天體物理學者爵士觀測到了廣義相對論預言的(這一實驗直到1959年才開始被精確地定量測量),這在當時是對廣義相對論最有力的支持。 時至今日,廣義相對論的理論預測已由實驗測量結果證實。 應用與影響 [ ] 主條目: 物理學是一門,不是。 物理學也被認為是基礎科學中的基礎科學,因為其它自然科學的分支,像、、、的理論都必須遵守物理定律 :94ff。 例如,化學研究物質的性質、結構、化學反應(化學專注於原子尺寸,這是化學與物理的主要界線)。 結構的形成是因為粒子與粒子之間彼此交互作用。 能量守恆、動量守恆、電荷守恆等,這些物理定律主導了物質性質和化學反應,以往化學家只能使用各種模糊的概念建立的理論也都因量子物理的發展而得到更為正確的了解。 指的是針對實際用途而進行的物理研究。 應用物理學的課程規畫通常會選修一些應用學科的課程,像或。 應用物理學與不同,應用物理學不會特別地設計某種元件或機器,而是用物理理論或從事物理研究來發展某種新科技或解析某問題。 應用到很多物理理論。 例如,在學習建造與其它建築物的技術之前,必須先學會的理論。 設計世界一流的音樂廳,必須先學會。 設計與製造更優良的光學元件必須先精思熟讀。 經過考慮種種物理因素而設計出來的、、等等,會顯得更加維妙維肖、栩栩如生。 研究的性質、組成、結構、以及變化規律。 化學研究的對象涉及物質之間的相互關係,或物質和能量之間的關聯。 傳統的化學常常都是關於兩種物質接觸、變化,即 ,又或者是一種物質變成另一種物質的過程。 這些變化有時會需要使用,當中電磁波負責激發化學作用。 不過有時化學都不一定要關於物質之間的反應。 研究物質與光之間的關係,而這些關係並不涉及化學反應。 準確的說,化學的研究範圍是包括分子、電子、離子、原子、原子團在內的核-電子體系。 隨著量子物理的發展,化學也吸收了量子物理的理論建立了更完備的理論基礎。 物理學使用的一些探本溯源、格物致知的方法也可用於。 物理學或多或少地影響了很多重要學術領域,例如,應用大量物理學裏的理論與方法來解析問題,這些問題時常會涉及或。 學術研究 [ ] 科學方法 [ ] 主條目: 科學方法是一種用來解答問題的系統性程序,通過這種程序,可以發展出對於大自然現象的合理解釋。 從觀察自然現象、閱讀書籍或討論中,時常會找到有意義的問題。 假若問題過於複雜,則必須剝除其無關緊要部分,找到核心思想,將問題簡化, :191-192進而發展出能夠解釋這問題並且被實驗檢試的假說。 經過實驗檢試後,或許需要對於假說加以改善或駁回。 這嚴格過程可能會重複多次,直到假說的預測能夠符合實驗結果為止,這假說才能被學術界接受成為科學理論。 :295-297 :66ff 實驗檢試必須擁有抓出科學理論的瑕疵的能力。 強調,科學理論必須具有。 換句話說,必須能夠對於理論預言與實驗結果做比較,假若兩者不一致,則不能承認這科學理論的正確性。 然而近期,有些學者與學者主張,一個足夠精緻並且能夠對相關問題給出解釋的理論不需要通過實驗檢試,例如,至今為止,弦理論是唯一能夠統一四種的理論,但是它所提出的概念,是無法做實驗觀測到的。 在宇宙學方面,、都涉及到無法觀測到的論述。 理論物理學者表示,理論不是科學理論,因為所有觀測結果都會與它的預測相符合,換句話說,它不具可證偽性。 對於這些理論是否為科學理論這問題,必須更加仔細研究與辯論。 理論與實驗 [ ] 主條目:和 物理學研究大致分為理論研究與實驗研究。 表明兩者的相同與不同之處: :39 理論物理學者想像、推演與猜想新的定律,但不做實驗,而實驗物理學者則是做實驗、想像、推演與猜想。 理論研究和實驗研究一般是分開進行的,然而它們彼此之間息息相關、缺一不可。 實驗結果對於理論發展給出建議,理論預測對於實驗設計給出引領。 :148 過去幾百年來,實驗結果驅使了理論物理的進展,最近幾十年來,物理學的演進方式已大幅度改變,在某些物理學分支領域,理論預測驅使了實驗物理的方向。 通常而言,當實驗者發現一個新現象,而已知理論無法解釋這新現象時,或者當根據新理論所作出的預測,可以通過設計精緻實驗來檢驗時,持著大膽假設,小心求證的研究態度,物理學往往會有所進展。 例如,在大型強子對撞機進行的各項研究完美地展示出理論物理學與實驗物理學的互助互補。 由於先前理論物理學者預測存在,實驗物理學者才會堅持不斷地做實驗探索其蹤跡,在經過幾十年努力後,終於證實了希格斯玻色子確切存在。 當今,理論物理學者正等待更多實踐數據來指示未來的理論研究方向。 實驗物理學者設計與完成實驗來檢試理論的預測與探索新的物理現象。 實驗物理學者探索大自然奧秘的方式有兩種,一種是消極方式,如同天文觀測者的作法,因為無法操控宇宙星體的物理行為,另一種是積極方式,如同粒子實驗者的作法,操控粒子來展示其行為與性質。 :1-2 實驗物理學擴展了與,也被工程學與科技所擴展。 涉及的實驗者,在做實驗時,時常會接觸到像或一類的先進器材;而那些涉及的實驗者,時常會在工業就職,開發像、一類的科技。 有時候,某些很有意思的區域,雖然理論物理學者尚未探索論證,實驗者也會先行做實驗檢驗測試。 :30-31 :157 理論物理學者試圖發展,這模型必須能夠合理地解釋其所針對的物理現象,這模型的預測還必須與實驗數據相符合。 :9理論物理學應該可能是影響最大、成本最少的基礎研究領域。 理論物理學推進了人類對於大自然的基本知識,又對於明日科技撒播了珍貴的種子。 、、、、、、等等對於人類文明有重大貢獻的科技皆是源於理論物理學者給出的突破。 努力探索理論與實驗之間錯綜複雜的交集區;他們專注於研究從實驗所觀測到的複雜現象,試圖找到這些複雜現象與物理理論之間的關係。 唯象專家計算理論模型的預測,並將這些預測跟實驗數據做比較。 :111 範疇與目標 [ ] 物理學涵蓋廣泛的自然現象,從微乎其微的(像:、、)到龐大無比的都是研究對象。 很多千變萬化的現象,都可用更基礎的現象來做合理的描述與解釋。 物理學是一門, :94ff物理學者致力於追根究底,發掘這些現象的,並試圖尋覓其中任何連結關係。 物理學者努力研究所得到的結果大致可歸納為一些明確的基礎定律。 其它許多學術領域,像、、、等等,所涉及的物質系統都遵守這些基礎定律。 但是,這些基礎定律仍不完全。 物理學對於自然現象所給出的描述與解釋,只是近似事實,而不是絕對事實。 :3ff :66-71 舉例而言,知道像一類的物質,當與毛皮磨擦時,會出現吸引力,使得這兩種磨擦物互相吸引。 :50這性質後來稱為。 在十七世紀,學者開始慎密地研查這性質。 :8另外,在亞洲大陸的那一端,觀測到某些石頭(),會通過某種看不見的作用力互相吸引。 這性質後來稱為。 也是在十七世紀,學者開始嚴格地窮究其起因。 :8經過燃膏繼晷、廢寢忘食的努力,物理學者終於明白了這兩種自然現象的基本成因——電和磁。 但是,在二十世紀,經過更深入的研究,物理學者發現電和磁是的兩種不同表現。 今天,這統一各種各樣交互作用的程序仍舊方興未艾,物理學者認為電磁交互作用和是的兩種不同表現。 物理學者的終極目標是找到一個完美的,其能夠解釋大自然的一切本質。 研究領域 [ ] 現代物理研究大致分類為、、、、等等。 有些大學的物理系也提供研究。 自20世紀以來,物理學的各個領域越加專業化,大多數物理學者整個職業生涯只專精於一個領域,像(1879—1955)和(1908—1968)這樣的全才大師現在寥若晨星。 粒子物理學 [ ] 主條目: 原子分子與光物理學專注於研究原子、分子與光,以及研究光與物質之間、物質與物質之間的交互作用。 闡明物理的基礎定律、了解物質是怎樣在原子與分子層次組構而成、明白光與物質之間的交互作用、發展出新技術與新器件,這些是原子分子與光物理學的中心目標。 原子分子與光物理學發展出的實驗與理論技術,時常會被應用於其它科學領域,例如,化學、天文物理學、生物學、醫藥學等等。 對於很多其它科學領域,通過發展關於控制與操縱原子、分子與光的方法,或通過精確測量與分析它們的物理性質,或通過發展出新方法來製成具有某種特定性質的光,原子分子與光物理學扮演著賦能的角色。 :1 原子物理學研究的結構與物理性質。 :148原子物理學的研究主要分為三種趨勢。 第一是研究自然基礎定律,這通常會涉及到高精確度測量。 第二是了解原子的結構,以及原子與光的交互作用。 第三是研究原子與電子之間、原子和離子之間的交互作用。 :53 分子物理學嘗試了解的結構與物理性質,分子與分子之間怎樣交互作用與進行反應,以及更複雜的物質狀態,例如液體等等。 分子物理學是跨立於物理與化學之邊界的一門學問,其常用的重要工具有、、、、等等。 分子物理學的主要研究目標為:分子的形狀與結構、分子的、分子的內部能量態、分子的光學性質與電磁性質、探測分子的方法、在科技與生物學與醫藥學領域的應用。 :88 :10-13 光物理學研究的性質、光與物質之間的交互作用,這包括光的生成與探測、與過程、光譜學。 光物理學的內容與應用光學、光工程學很鄰近。 光物理學專注於光的基礎物理研究,應用光學注重於應用相關科技在其它科學領域,而光工程學則注重於光學器件的設計與發展。 一些前瞻性研究領域為、、與、 ( 英語 : )、、等等。 :110 凝聚態物理學 [ ] 主條目: 凝聚態物理學研究物質的物理性質,例如,從測量物質的、、、等等所獲得的數據可以得知它們對於外界影響的反應。 在粒子與粒子之間的交互作用都是已知的交互作用的前提下,凝聚態物理學對於分析與描述多粒子系統給出工作框架。 凝聚態物理學專注於多粒子系統,指的是由大量粒子組成,並且粒子與粒子之間存在很強的交互作用的系統。 :1-3常見的凝聚態有和,由於與原子之間因而形成的,才會出現這些。 比較罕見的凝聚態包括發生於非常低溫系統裏的和、 在某些物質裏的展現的、 在某些磁性物質內部因為定域於原子的而出現的和。 :85-87 與主導了物質的宏觀性質,這是凝聚態物理學的一個重要概念。 在由大量粒子組成的孤立系統裡,粒子數、能量、動量、電荷量等等都是守恆量。 在足夠高溫度狀況下,這系統具有較高的,例如在裡的與。 假設降低溫度,則會凝聚出新的熱力學穩定態,其具有越來越多的對稱性破缺,因此,對稱性會變得越來越低。 :1-3 凝聚態物理學起源於十九世紀和的發展,當今是物理學的最大分支,與、、有相當程度的重疊。 天文物理學 [ ] 在領域裡,促使懸浮於的上方。 雖然物理學是最古老的之一,時至今日,仍有許多具突破性的劃時代研究在物理的各個分支領域夜以繼日、如火如荼地進行中。 在領域裡,某些物質在溫度高於50 K仍舊具有超導電性,物理學者不清楚促成這現象的機制為何。 很多凝聚體實驗的目標是製成可使用的元件和元件。 在領域,支持物理學的實驗證據已開始陸續出現。 在這些結果之中,比較重要的是具有非零質量的徵象。 這實驗結果合理解答了矚目已久的,即有些微中子在從太陽傳播到地球的路途中,會轉換為實驗無法偵測的別種類微中子的現象。 帶質量微中子的物理研究是很熱門的理論與實驗題目。 辨明微中子震盪與反微中子震盪的不同之處也是個重要題目,其可以對於為什麼宇宙裡到處都是物質,而不是反物質這個宇宙學難題給出解答。 很多實驗都在尋找的蛛絲馬跡。 (CERN)宣布,大強子對撞機已發現,但數量有限,無法詳細觀察其性質,未來通過蒐集更多數據,例如希格斯玻色子的各種管道的頻率,預期將能夠發現任何不符合標準模型之物理行為,以及找到任何不同種類的希格斯玻色子。 在領域,理論物理學者嘗試將和統一成為。 這研究已延續了大半個世紀,但至今仍未得到滿意的答案。 現今幾個比較成功的理論為、、。 :296 在領域,許多和現象仍舊沒有找到合意的解答,如、、等等。 :60, 187-188. 以下列出一些重要論題:• 研究宇宙的初始與命運:嘗試解釋、、、、、等等難題。 研究宇宙的演化機制:宇宙怎樣從大爆炸演化至當今的浩瀚星空?初始的恆星、星系與黑洞是怎樣形成的?它們怎樣影響後來天文星體的形成?各種天文星體是怎樣形成的?• 研究鄰近的:它們是否適合居住、是否已孕育生命?怎樣才能觀察到更多關於它們的資訊? 雖然,高能物理、量子物理、天文物理等領域有很大的突破與進展,但對於許多涉及、、等等日常發生的現象,科學家仍是一知半解。 :30 地震、斷裂、生命等等現象只會發生於離平衡很遠的狀況,其所出現的系統稱為 ( 英語 : )。 很多關於平衡系統或近平衡系統的物理行為都已被了解,但是,物理學者只知道些許主導離逖平衡系統的基本原理。 參見 [ ]• Oxford Living Dictionaries. Oxford University Press. [ 2016-11-05]. (原始內容於2016-11-11). The branch of science concerned with the nature and properties of matter and energy• Young, R. Freedman, University Physics with Modern Physics 11th, Addison Wesley, 2004, Physics is an experimental science. Physicists observe the phenomena of nature and try to find patterns and principles that relate these phenomena. These patterns are called physical theories or, when they are very well established and of broad use, physical laws or principles. Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics. College Physics: Reasoning and Relationships. Cengage Learning. 2009-02-13. physics: the science of matter and energy, and the interactions between them• The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional and Intellectual Contexts. Cambridge University Press. 1996-10-28. physics, chemistry, biology… emerged as independent disciplines from within the matrix of natural philosophy during the seventeenth to nineteenth centuries. Physics Survey Overview Committee; Board on Physics and Astronomy; Division on Engineering and Physical Sciences; National Research Council. National Academies Press. 2001-06-15 [ 2016-11-11]. (原始內容於2016-11-11). 引文使用過時參數coauthors• 鶡冠子. 中國哲學書電子化計劃. [10-11-2016]. (原始內容於2016-11-24). 劉源俊. PDF. 東吳大學物理學系學生網. [ 2016-07-27]. ( PDF 存檔於2016-08-07). 張道擴. 趣說生活俗語 巧學初中物理二、三例. 中學物理(初中版). 2011, 11 29. 馮天瑜. 《武漢大學學報》. 2005, 1 [ 2014-07-15]. (存檔於2014-07-19). 戴念祖. 中國科學技術史:物理學卷. 科學出版社. Free Press. 1997-03-01 [ 2016-11-20]. (原始內容於2016-12-30). Courier Corporation. 2013-10-29. Florian Cajori. Macmillan. 1917 [ 2016-11-22]. (原始內容於2016-04-30). G E R Lloyd. Early Greek Science: Thales to Aristotle. Random House. 2012-09-30. supernatural plays no part in their explanations [for the cosmologies]• Lindberg, David. The beginnings of western science: the European scientific tradition in philosophical, religious, and institutional context, Prehistory to A. 1450. The University of Chicago Press. 2007. In medieval Islam, Ibn al-Haytham performed experiments designed to prove or disprove the truth of optical theories• Howard; Brian J. Rogers. Binocular Vision and Stereopsis. Oxford University Press. 1995. David C. Lindberg. Theories of Vision from Al-kindi to Kepler. University of Chicago Press. 1981. Dictionary. com. [ 2016-11-18]. (原始內容於2016-11-22). Physics that does not make use of quantum mechanics or the theory of relativity. Newtonian mechanics, thermodynamics, and Maxwell's theory of electromagnetism are all examples of classical physics. From Clockwork to Crapshoot: A History of Physics. Harvard University Press. 2009-06-30. 1997 [ 2016-11-22]. (原始內容於2017-11-29). Heilbron. The Oxford Guide to the History of Physics and Astronomy. Oxford University Press, USA. 2005-06-03. Tipler; Ralph Llewellyn. Modern Physics. Freeman. 2003. , Introduction to Elementary Particles 2nd revised, WILEY-VCH, 2008,• Motter, A. ; Campbell, D. Phys. Today. 2013, 66 5 : 27—33. [ ]• Kaku, Michio. Michio Kaku. [ 2016-10-25]. (存檔於2016-05-03). 陳世民. 理論力學簡明教程(第二版). 高等教育出版社. Lanczos, Cornelius, The Variational Principles of Mechanics, Dovers Publications, Inc, 1970,• [ 2013-06-14]. (原始內容於2015-04-29). Acoustical Society of America. [ 2013-05-21]. (存檔於2015年9月4日). McGraw-Hill Encyclopedia of Science and Technology 5th. McGraw-Hill. 1993. Hecht, Eugene, Optics 4th, United States of America: Addison Wesley, 2002, (英語)• 高等教育出版社. Enrico Fermi. Thermodynamics. Courier Corporation. 1956-06-01. 郭碩鴻. 電動力學(第三版). 高等教育出版社. : 14-18. Griffiths, David J. , Introduction to Electrodynamics 3rd ed. , Prentice Hall, 1998,• Carroll, John. Stanford Encyclopidia of Philosophy. Stanford University. 2016-08-02 [ 2016-10-06]. (原始內容於2016-10-20). Markus Arndt; Kalus Hornberger. Nature Physics. 2014, 10: 271—277 [ 2016-10-06]. (原始內容於2016-10-09). Quantum mechanics has passed all precision tests with flying colours. Rovelli, Carlo. www. scholarpedia. org. [ 2016-01-09]. (原始內容於2018-07-04). 1—14 [ 2012-10-20], , (原始內容於2019-05-05) 引文格式1維護:冗餘文本• Kip Thorne. Norton. 1995-01-17. "在我們眼前的宇宙這本巨著裏,寫滿了精彩無比的哲理。 但是,假若我們我們不先學會其語言,不能理解內中的符號,則我們絕對無法懂得這本巨作的內容。 這本巨作是以數學語言書寫的,其內中符號是三角形、圓形和其它幾何圖樣。 沒有這些語言與符號,我們絕對無法懂得其中任何一個字語,我們就好像是徒然漫遊於黑暗迷宮的流浪者。 " —伽利略(1623), 分析者,引述作者G. Toraldo Di Francia 1976 , The Investigation of the Physical World p. Math. niu. edu. 2000-01-25 [ 2012-01-30]. (存檔於2015-05-10). The Character of Physical Law. 1965. : "In fact experimenters have a certain individual character. They... very often do their experiments in a region in which people know the theorist has not made any guesses. Griffiths, David J. , Introduction to Quantum Mechanics 2nd ed. , Prentice Hall: 93, 2004,• American Association for the Advancement of Science, Science. 1917. Page 645• Merriam-Webster's Medical Dictionary. Retrieved August 19, 2007. 北京師範大學,華中師範大學,南京師範大學無機化學教研組. 無機化學第四版. 北京: 高等教育出版社. 1981年12月. (中文). Kip S. Thorne. Black Holes and Time Warps: Einstein's Outrageous Legacy. Norton. 1994. Rusty L. Myers. The Basics of Physics. Greenwood Publishing Group. 2006. Garland, Jr. , Theodore. U C Riverside. (存檔於2016-08-19). Goldhaber, Alfred Scharff; Nieto, Michael Martin, , Review of Modern Physics American Physical Society , January—March 2010, 82: pp. 940 [ 2013-02-02], , (原始內容於2014-05-31) 引文格式1維護:冗餘文本 引文格式1維護:日期與年• George Ellis; Joe Silk. Nature. com. Nature. 2014-12-16. (存檔於2016-04-02). William H. Cropper. Great Physicists: The Life and Times of Leading Physicists from Galileo to Hawking. Oxford University Press. 2004-09-16. Perimeter Institute for Theoretical Physics. June 2015. (存檔於2016-04-21). Jarlett, Harriet. CERN. 2016-05-19 [ 2016-12-05]. (原始內容於2016-12-12). Allan Franklin; Slobodan Perovic. Stanford Encyclopedia of Philosophy. 2015-02-27 [ 2016-10-25]. (原始內容於2016-11-09). Experiment … test theories and to provide the basis for scientific knowledge. It can also call for a new theory, either by showing that an accepted theory is incorrect, or by exhibiting a new phenomenon that is in need of explanation• CERN. 2016-04-14. (存檔於2016-10-25). An Introduction to Experimental Physics. CRC Press. 2005-08-08. Michael P. Marder. Research Methods for Science. Cambridge University Press. 2011-01-27. Perimeter Institute for Theoretical Physics. [ 2016-11-01]. (存檔於2016-05-03). Sharon Traweek. Beamtimes and Lifetimes. Harvard University Press. 2009-06-30. Max Planck Institute for Physics. [ 2016-10-22]. (存檔於2016-03-07). De Pree, Christopher, 1, Physics Made Simple 2nd, Random House, Inc. , 2005,• Stewart, Joseph, Intermediate Electromagnetic Theory, World Scientific, 2001,• , , Nelson, London, 1951 [ 2013-02-02], (原始內容於2009-02-25)• 見《》:「其察言也,不失若磁石之取鍼,舌之取燔骨。 」用白話解釋,「察析這人的言詞話語,就好像用磁石吸取鐵針,又好像用舌尖探取炙肉中的骨頭,絕對不能有所差失。 (原始內容於2013-05-22). Weinberg, Steven, Dreams of a Final Theory: The Search for the Fundamental Laws of Nature, Hutchinson Radius, London, 1993,• University of Minnesota. 2015-11-20 [ 2016-10-06]. (原始內容於2016-10-09). Princeton University. 2011-02-24 [ 2016-10-06]. (原始內容於2016-09-24). Redish, Edward. University of Maryland Physics Education Research Group. University of Maryland. [ 2016-09-22]. (原始內容於2016-07-28). American Physical Society. [ 2012-10-18]. (存檔於2016-08-29). Halpern, P. Collider: The Search for the World's Smallest Particles. 2010. Grupen, Klaus. Instrumentation in Elementary Particle Physics: VIII ICFA School. AIP Conference Proceedings. 1999-07-10, 536: 3—34. Walsh, K. Brookhaven National Laboratory. 2012-06-01 [ 2012-10-18]. (存檔於2016-07-29). University of Colorado Boulder. [ 2016-11-03]. (存檔於2016-09-16). CERN. 2012-07-04 [ 2012-10-18]. (存檔於2012年11月14日). American Physical society. 2016. (存檔於2016-06-24). National Academy Press. 1986. Encyclopedia Britannica Online. Encyclopedia Britannica, Inc. (存檔於2016-07-31). Yates. How to Find Out About Physics: A Guide to Sources of Information Arranged by the Decimal Classification. Elsevier Science. 22 October 2013. Theodore Buyana. Molecular Physics. World Scientific. Physical Review Letters. 2008, 101 5 : 25001 5 pages [ 2012-10-26]. (原始內容於2013-01-31). Chaikin; T. Lubensky. Principles of Condensed Matter Physics. Cambridge University Press. 2000-09-28: 87—. Leggett, A. Superfluidity. Reviews of Modern Physics. 1999, 71 2 : S318—S323. Levy, B. Physics Today. December 2001, 54 12 : 14. (存檔於2016-05-15). Stajic, Jelena; Coontz, R. ; Osborne, I. Happy 100th, Superconductivity!. Science. 2011-04-08, 332 6026 : 189. American Physical Society. [ 2014-03-31]. (原始內容於2011-09-12). Encyclopedia Britannica. (存檔於2016-08-01). Merriam-Webster, Incorporated. [ 2011-05-22]. (原始內容於10 June 2011). Balter, Ariel. Space. com. 2014-06-12 [ 2016-10-15]. (原始內容於2016-09-30). University of Hawaii at Manoa. [ 2016-10-14]. (存檔於2016-04-04). Drexel University. [ 2016-10-14]. (存檔於2016-07-19). Leggett. What DO we know about high T c?. Nature Physics. 2006, 2 3 : 134. Wolf, S. ; Chtchelkanova, A. ; Treger, D. Spintronics—A retrospective and perspective. IBM Journal of Research and Development. 2006, 50: 101. Gibney, Elizabeth. Nature. 2015-08-12 [ 2016-10-09]. (原始內容於2016-08-17). Gibney, Elizabeth. Nature. 2015-03-11 [ 2016-10-07]. (原始內容於2016-12-21). Rovelli, Carlo. www. scholarpedia. org. [ 2016-01-09]. (原始內容於2018-07-04). Katrin Becker; Melanie Becker; John H. Schwarz. String Theory and M-Theory: A Modern Introduction. Cambridge University Press. 2006-12-07. 2010-02-22, 463: 1011 [ 2016-10-09]. (原始內容於2016-12-21). Barbara Sue Ryden. Introduction to cosmology. Addison-Wesley. 2003. Dorminey, Bruce. Scientific American. 2010-12-30 [ 2016-10-09]. (原始內容於2011-11-25). NASA. [ 2016-10-15]. (原始內容於2016-10-18). Astrophysics Subcommittee. PDF. NASA. 2013 [ 2016-10-14]. ( PDF 存檔於2016-10-19). The past three decades have seen prodigious advances in astronomy and astrophysics• National Research Council; Committee on Technology for Future Naval Forces. Washington, DC: The National Academies Press. 1997 [ 2016-10-09]. (原始內容於2014-04-07). Complex systems are poorly understood :161• Kellert, S. In the Wake of Chaos: Unpredictable Order in Dynamical Systems. University of Chicago Press. 1993. chaotic systems require impossibly great resources for accomplishing useful predictions• Eames, I. ; Flor, J. Philosophical Transactions of the Royal Society A. 2011-01-17 [ 2016-10-09]. (原始內容於2016-08-17). Richard Feynman said that 『Turbulence is the most important unsolved problem of classical physics』• Heinrich Jaeger; Andrea Liu. Far-From-Equilibrium Physics: An Overview. 2010-09-24. published in book Condensed-Matter and Materials Physics: the science of the world around us National Academies Press, Washington, DC, 2007 外部連結 [ ].

次の

【物理基礎】弦の振動の公式とは?導出も問題もイメージで突破せよ!

物理基礎

これでゼロから早慶まで!おすすめ物理基礎の参考書ルート 物理基礎の対策をしなければいけないけど、適切な勉強方法がわからない。 参考書を調べても多すぎてどれが自分に合っているのかわからなくてこまった。。。 そんな悩みを抱えている高校生の皆さんのために、この記事では 物理基礎 の参考書ルートを紹介していきます!• どのレベルの時にその参考書を使えばいいのか• その参考書を終えたらどれくらいのレベルに到達することができるのか など ゼロから早稲田・慶応大学の難易度まで対応できるルートになりますので、 今の自分のレベルと志望校のレベルに合わせて、使う参考書を選んでみてください。 物理基礎 おすすめの参考書ルート2選! 物理基礎やさしいセット 基本データ ページ数 504 目安時間 30h 対象 これから物理を学びはじ める生徒 特徴 先生と生徒による会話の形式で書かれており、図も大きくて見やすいため非常に取り組みやすい。 高校物理を理解するために必要な用語の説明なども分かりやすく書かれているので 物理初学者が取り組む のにふさわしい。 使い方と注意点 0章も含めて全ての例題に取り組む。 初学者向けなので、 自分の頭で考えるというよりは解答解説(先生と生徒の対話部分)をしっかりと読んで理解することが重要。 解説の中で出てきた図は自分の手でも描いてみることが望ましい。 わからないところは先生に質問するなどして確実に理解していこう。 高校とってもやさしい物理基礎 基本データ ページ数 192 目安時間 25h 対象 理解本でもやっぱり分かりづらい生徒 特徴 穴埋め問題の分量が多く、用語や簡単な公式の確認にとても有効だ。 書き込み式なので物理に苦手意識があっても取り組みやすい。 プレ受験勉強用の問題集にもってこいである。 使い方と注意点 まずは1度説明文に 目を通して重要事項を再確認しておく。 その後「確認しよう」の穴埋め問題を解こう。 大問ごとに丸つけをして自分の認識が正しいか確認し、全て終わったら「解いてみよう」も同様に大問1問ずつ取り組 もう。 もし間違えた問題があれば必ず理解本の該当範囲を読み直すこと。 改訂版 センター試験 物理基礎の点数が面白いほどとれる本 基本データ ページ数 273 目安時間 35h テスト 〇 対象 共通テスト物理基礎で高 得点を狙う生徒 特徴 ページ数が多いが教科書よりは簡単に読み切ることができるだろう。 5ページに1問ほどのペースでチェック問題が掲載されているため、 得た知識の応用方法をその場で確認できる。 使い方と注意点 読み流すのでは なく、どのような現象がどのような理由で起こっているのかをしっかり理解していく意識で読み進める。 チェック問題が出てきたら前のページを見直しながら解いてみよう。 覚えにくい箇所があったら積極 的に付箋やマーカーでチェックして立ち返りやすくしておきたい。 また、 本書は辞書のように使うこともできる。 リードLightノート物理基礎 どのように勉強するか 市販の参考書の使い方 解法の丸暗記ではなく、 公式や解法の意味を理解する。 間違った問題 に印をつけておき、繰り返し解くことで着実に穴を埋めていく。 時間がなくて も計算問題は自分の手で書いて練習する。 過去問の使い方 計算ミスをしやすいので本番を意識して見直しの時間も含めて解く。 間違えた 問題に関しては類題を沢山解くなどして出題パターンに慣れる。 他科目のおすすめ参考書ルート アクシブblog予備校では大学受験に必要なすべての科目のおすすめ参考書ルートを公開しています。 また、参考書ルートだけでなく、各記事では大学の難易度別に必要な対策も解説しています。 是非参考にしてみてください。 理科ならこちら! アクシブアカデミーについて アクシブblog予備校では参考書ルートなど、受験に役立つ情報を随時更新しています。 また、アクシブblog予備校を運営するアクシブアカデミーは東京大学が位置する本郷三丁目に本部を持ち、大学の受験情報や参考書の分析などを行い、塾生・受験生の皆さんのお力になれるよう日々尽力しています。 アクシブアカデミーに興味のある方はぜひからお問い合わせください。 関連する記事•

次の